ON THE RESTRICTION OF ZUCKERMAN’S DERIVED FUNCTOR MODULES Aq(λ) TO REDUCTIVE SUBGROUPS

نویسنده

  • YOSHIKI OSHIMA
چکیده

In this article, we study the restriction of Zuckerman’s derived functor (g,K)-modules Aq(λ) to g′ for symmetric pairs of reductive Lie algebras (g, g′). When the restriction decomposes into irreducible (g′,K′)-modules, we give an upper bound for the branching law. In particular, we prove that each (g′,K′)-module occurring in the restriction is isomorphic to a submodule of Aq′ (λ ′) for a parabolic subalgebra q′ of g′, and determine their associated varieties. For the proof, we realize Aq(λ) on complex partial flag varieties by using D-modules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES KOMABA, TOKYO, JAPAN CLASSIFICATION OF DISCRETELY DECOMPOSABLE Aq(λ) WITH RESPECT TO REDUCTIVE SYMMETRIC PAIRS

We give a classification of the triples (g, g′, q) such that Zuckerman’s derived functor (g,K)-module Aq(λ) for a θ-stable parabolic subalgebra q is discretely decomposable with respect to a reductive symmetric pair (g, g′). The proof is based on the criterion for discretely decomposable restrictions by the first author and on Berger’s classification of reductive symmetric pairs.

متن کامل

Deligne-Lusztig restriction of a Gelfand-Graev module

Using Deodhar’s decomposition of a double Schubert cell, we study the regular representations of finite groups of Lie type arising in the cohomology of Deligne-Lusztig varieties associated to tori. We deduce that the Deligne-Lusztig restriction of a Gelfand-Graev module is a shifted Gelfand-Graev module. INTRODUCTION Let G be a connected reductive algebraic group defined over an algebraic closu...

متن کامل

Another Characterization of Parabolic Subgroups

Let G be a reductive algebraic group defined over an algebraically closed field k. Let H be a closed connected subgroup of G containing a maximal torus T of G. In [13] it was shown (at least in characteristic zero) that the parabolic subgroups of G can be characterized among all such subgroups H by a certain finiteness property of the induction functor (-)Iz and its derived functors Lk,G(-). Th...

متن کامل

Compatibility of the Theta correspondence with the Whittaker functors

We prove in this note that the global geometric theta lifting for the pair (H,G) is compatible with the Whittaker normalization, where (H,G) = (SO2n, Sp2n), (Sp2n, SO2n+2), or (GLn, GLn+1). More precisely, let k be an algebraically closed field of characteristic p > 2. Let X be a smooth projective connected curve over k. For a stack S write D(S) for the derived category of étale constructible Q̄...

متن کامل

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014